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The utilization of space resources is necessary to not only foster the growth of human activities in
space, but is essential to the President’s vision of a “sustained and affordable human and robotic program
to explore the solar system and beyond.” The distribution of resources will shape planning permanent set-
tlements by affecting decisions about where to locate a settlement. Mapping the location of such re-
sources, however, is not the limiting factor in selecting a site for a lunar base. It is indecision about which
resources to use that leaves the location uncertain [1]. A wealth of remotely sensed data exists that can be
used to identify targets for future detailed exploration. Thus, the future of space resource utilization pre-
dominately rests upon developing a strategy for resource exploration and efficient methods of extraction.

The Clementine [2] and Lunar Prospector [3] missions have provided global datasets that already
provide the distribution of many potential lunar resources. Clementine acquired multispectral images
from ultraviolet through near-infrared wavelengths. These data allow assessments of the abundances of
major minerals (plagioclase, pyroxene, ilmenite, and olivine) on the Moon [4]. In addition, the data can be
used to determine the FeO and TiO, contents of the surface to ~1wt% accuracy and high spatial resolution
[5-8]. The distribution of pyroclastic materials with their enrichments of FeO and TiO, and possible vola-
tile elements are mapped using Clementine multispectral data and derived optical maturity data [9]. Per-
haps even more important, *He can be mapped by association with TiO, and surface maturity [10]. The
’ abundance of *He in the lunar regolith depends
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Fe, Ti, Th, K, H, Sm, and Gd [8, 11, 12]. Fe and
Ti data provide an independent check on the
concentrations determined by reflectance spec-
troscopy [6]. Neutron spectrometer data indicate

the presence of hydrogen deposits at the lunar
Maturity poles, which if present as water-ice suggests a
Opaque abundance H,0 concentration of 1-2 wt% [13].
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have a sensitivity to bulk FeO and TiO, abundance. The correlation of abrupt changes in radar return with
color boundaries in Clementine color and TiO;, images indicates that the data are controlled, to a signifi-
cant degree, by the TiO, (ilmenite) composition of the regolith [14]. The greater depth of penetration of
radar data compared to the Clementine data (several meters versus microns) will allows the assay of TiO,
abundance to greater depth. Earth-based radar does not, however, concur with Clementine concerning the
existence of ice at the south pole of the Moon [15]. This apparent discrepancy in the presence of ice has
not been satisfactory explained, and will require closer study by orbiting and landed missions
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